Note: The actual exam will be shorter

MAC 1114

EXAM 3

Spring-2016

1 (15 points) Determine the amplitude, period, and phase shift of $y = 4\sin(2x - \frac{2\pi}{3})$. Then graph the function.

[2] (10 points) Use the right triangle shown in the picture to find b, c, and B. We know that b=5, $B=60^{\circ}$. You need to use trigonometric functions for this question, other methods will be disregarded.

- (20 points)
- (a) (3 points) Find the exact value of $\cos^{-1}(-\frac{\sqrt{2}}{2})$. Explain your answer.

(b) (3 points) Find the exact value of $\sin(\sin^{-1}(-2\pi))$.

(c) (4 points) Find the exact value of $\sin^{-1}\left(\sin\left(\frac{5\pi}{6}\right)\right)$. Explain your answer.

(d) (5 points) Find the exact value of $\tan \left(\sin^{-1}(-\frac{4}{5})\right)$.

(e) (5 points) Find the exact value of $\sin(75^{\circ})$

- 4 (15 points)
- (a) (5 points) Verify the identity

$$\cos\theta\cdot\csc\theta\cdot\tan\theta=1$$

(b) (10 points) Verify the identity

$$\frac{\sec(2\theta) - \cos(2\theta)}{\sin^2(2\theta)} = \sec(2\theta)$$

[5] (15 points) Given that $\sin(\alpha) = \frac{4}{5}$, α lies in quadrant I, and $\sin(\beta) = \frac{4}{5}$, β lies in quadrant II. Find the exact value of $\sin(\alpha - \beta)$.

6 (10 points) Verify the identity

 $(\sin\theta - \cos\theta)^2 = 1 - \sin 2\theta$

MAC 1114

EXAM 3

(a) (10 points) Find the value of $2 + \sin^2(75^\circ) + \sin^2(15^\circ)$. Explain your answer.

(b) (10 points) Use the reference angle to find the exact value of $\sin(-135^{\circ})$. Explain your answer.

8 (Bonus 5 points) Find the exact value of

$$\cos^2(22.5^\circ) - \sin^2(22.5^\circ)$$

- (25 points)
- (a) (10 points) Solve the equation over the interval $[0, 2\pi)$

$$\cos(2x) = \frac{\sqrt{2}}{2}$$

(b) (15 points) Solve the following equation on the interval $[0, 2\pi)$

$$\sin x \cdot \cos x = -\frac{\sqrt{3}}{4}$$