MAC 1114

EXAM 4

1

(a) (5 points) Verify the identity

 $\cos\theta\cdot\csc\theta\cdot\tan\theta=1$

(b) (10 points) Verify the identity

$$\frac{\sec(2\theta) - \cos(2\theta)}{\sin^2(2\theta)} = \sec(2\theta)$$

(c) (4 points) Find the exact value of $\sin^{-1}\left(\sin\left(\frac{5\pi}{6}\right)\right)$. Explain your answer.

(d) (5 points) Find the exact value of $\tan \left(\sin^{-1}\left(-\frac{4}{5}\right)\right)$.

(e) (5 points) Find the exact value of $\sin(75^{\circ})$

2 (10 points) Plot the following points in polar coordinates

(a) (5 points) $(3, -\frac{2\pi}{3})$

(b) (5 points) $\left(-2, \frac{5\pi}{6}\right)$

- (10 points)
- (a) (5 points) Find the rectangular coordinates of $(r, \theta) = (-2, 135^{\circ})$.

(b) (5 points) Find the polar coordinates of (x,y)=(-2,2) such that r>0 and $0\leq\theta\leq 2\pi$.

- 4 (20 points)
- (a) (10 points) Convert the polar equation to a rectangular equation

$$r = 14 \sec \theta$$

(b) (10 points) Convert the polar equation to a rectangular equation

$$r^2\sin(2\theta) = 4$$

EXAM 4

[5] (15 points) Solve the triangle with a = 5, $b = 5\sqrt{3}$, and $B = 60^{\circ}$. You need to use either the law of sines or the law of cosines for this question, other methods will be disregarded.

[6] (10 points) Find the largest angle of the triangle with a=2, b=2, and $c=2\sqrt{3}$. You need to use either the law of sines or the law of cosines for this question, other methods will be disregarded.

- [7] (10 points) Identify the polar graph (line, circle, cardioid, limacon, rose): If a circle, name the center and the radius. If a limacon, name the type. If a rose, state the number of petals.
- (a) (5 points) $r = -5\sin 3\theta$

(b) (5 points) $r = 4\cos\theta$

[8] (15 points) Test for symmetry and graph the polar equation $r = 2 + 6\cos(\theta)$ (note that $2 + 3\sqrt{3} \approx 7$, and $2 - 3\sqrt{3} \approx -3$, and $2 + 3\sqrt{2} \approx 6.2$, and $2 - 3\sqrt{2} \approx -2.2$)

EXAM 4

(20 points) Test for symmetry and graph the polar equation

$$r = 8\cos(2\theta)$$

(20 points) Test for symmetry and graph the polar equation

$$r = 3 - 4\sin(\theta)$$

MAC 1114

EXAM 4

[11] (16) points)

(a) (5 points) Find the quotient $\frac{z_1}{z_2}$. Leave the answer in polar form.

$$z_1 = 16(\cos 28^{\circ} + i \sin 28^{\circ}), \qquad z_2 = 8(\cos 4^{\circ} + i \sin 4^{\circ})$$

(b) (5 points) Take the power of the following complex number. Leave the answer in polar form.

$$[5(\cos 105^{\circ} + i \sin 105^{\circ})]^3$$

EXAM . 4

(15 points) Solve the triangle with a = 6, $C = 120^{\circ}$, and $B = 30^{\circ}$. You need to use either the law of sines or the law of cosines for this question, other methods will be disregarded.

[13] (15 points) Solve the triangle with a = 10, b = 30, and $A = 150^{\circ}$. You need to use either the law of sines or the law of cosines for this question, other methods will be disregarded.